4,002 research outputs found

    Give me a hint: An ID-free small data transmission protocol for dense IoT devices

    Get PDF
    IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. For example, an IPv6 address is 128 bits, which is much longer than a 16-bit temperature report. Also, contending to send a small packet is not cost-effective. In this work, we propose a novel framework, which is slot-based, schedule-oriented, and identity-free for uploading IoT devices' data. We show that it fits very well for IoT applications. The main idea is to bundle time slots with certain hashing functions of device IDs, thus significantly reducing transmission overheads, including device IDs and contention overheads. The framework is applicable from small-scale body-area (wearable) networks to large-scale massively connected IoT networks. Our simulation results verify that this framework is very effective for IoT small data uploading

    Finding Answers to Definition Questions Using Web Knowledge Bases

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Rectified softmax loss with all-sided cost sensitivity for age estimation

    Get PDF
    In Convolutional Neural Network (ConvNet) based age estimation algorithms, softmax loss is usually chosen as the loss function directly, and the problems of Cost Sensitivity (CS), such as class imbalance and misclassification cost difference between different classes, are not considered. Focus on these problems, this paper constructs a rectified softmax loss function with all-sided CS, and proposes a novel cost-sensitive ConvNet based age estimation algorithm. Firstly, a loss function is established for each age category to solve the imbalance of the number of training samples. Then, a cost matrix is defined to reflect the cost difference caused by misclassification between different classes, thus constructing a new cost-sensitive error function. Finally, the above methods are merged to construct a rectified softmax loss function for ConvNet model, and a corresponding Back Propagation (BP) training scheme is designed to enable ConvNet network to learn robust face representation for age estimation during the training phase. Simultaneously, the rectified softmax loss is theoretically proved that it satisfies the general conditions of the loss function used for classification. The effectiveness of the proposed method is verified by experiments on face image datasets of different races. © 2013 IEEE
    • …
    corecore